Crossings, Motzkin paths and moments

نویسندگان

  • Matthieu Josuat-Vergès
  • Martin Rubey
چکیده

Kasraoui, Stanton and Zeng, and Kim, Stanton and Zeng introduced certain q-analogues of Laguerre and Charlier polynomials. The moments of these orthogonal polynomials have combinatorial models in terms of crossings in permutations and set partitions. The aim of this article is to prove simple formulas for the moments of the q-Laguerre and the q-Charlier polynomials, in the style of the Touchard-Riordan formula (which gives the moments of some q-Hermite polynomials, and also the distribution of crossings in matchings). Our method mainly consist in the enumeration of weighted Motzkin paths, which are naturally associated with the moments. Some steps are bijective, in particular we describe a decomposition of paths which generalises a previous construction of Penaud for the case of the Touchard-Riordan formula. There are also some non-bijective steps using basic hypergeometric series, and continued fractions or, alternatively, functional equations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dyck Paths, Motzkin Paths, and the Binomial Transform

We study the moments of orthogonal polynomial sequences (OPS) arising from tridiagonal matrices. We obtain combinatorial information about the sequence of moments of some OPS in terms of Motzkin and Dyck paths, and also in terms of the binomial transform. We then introduce an equivalence relation on the set of Dyck paths and some operations on them. We determine a formula for the cardinality of...

متن کامل

Moments of Generalized Motzkin Paths

Abstract: Consider lattice paths in the plane allowing the steps (1,1), (1,-1), and (w,0), for some nonnegative integer w. For n > 1, let E(n,0) denote the set of paths from (0,0) to (n,0) running strictly above the x-axis except initially and finally. Generating functions are given for sums of moments of the ordinates of the lattice points on the paths in E(n,0). In particular, recurrencess ar...

متن کامل

# a 49 Integers 12 ( 2012 ) Inverses of Motzkin and Schröder Paths

The connection between weighted counts of Motzkin paths and moments of orthogonal polynomials is well known. We look at the inverse generating function of Motzkin paths with weighted horizontal steps, and relate it to Chebyshev polynomials of the second kind. The inverse can be used to express the number of paths ending at a certain height in terms of those ending at height 0. Paths of a more g...

متن کامل

Moments of Askey-Wilson polynomials

New formulas for the n moment μn(a, b, c, d; q) of the Askey-Wilson polynomials are given. These are derived using analytic techniques, and by considering three combinatorial models for the moments: Motzkin paths, matchings, and staircase tableaux. A related positivity theorem is given and another one is conjectured. Résumé. Nous présentons de nouvelles formules pour les n-moments μn(a, b, c, d...

متن کامل

Crossings and Nestings in Colored Set Partitions

Chen, Deng, Du, Stanley, and Yan introduced the notion of k-crossings and k-nestings for set partitions, and proved that the sizes of the largest k-crossings and k-nestings in the partitions of an n-set possess a symmetric joint distribution. This work considers a generalization of these results to set partitions whose arcs are labeled by an r-element set (which we call r-colored set partitions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 311  شماره 

صفحات  -

تاریخ انتشار 2011